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We investigate the nonequilibrium kinetics of deposition and evaporation of dimers in bipartite
lattices. For equal deposition-evaporation rates a quantum spin analogy enables one to describe

1

the dimer stochastic evolution in terms of the isotropic spin-; Heisenberg ferromagnet. This allows
for an exact solution of nonequilibrium density profiles in higher dimensions starting from initially
unstable states. It is shown that these systems exhibit diffusive behavior and how the interplay
between jamming and dimensionality determines the type of asymptotic equilibration kinetics.

PACS number(s): 02.50.—r, 75.10.Jm, 82.20.Mj, 05.50.+q

There is much current interest in the theoretical un-
derstanding of stochastic cooperative systems evolving
microscopically under conservative dynamical rules [1].
These systems are a common starting point to study a
variety of physical situations with different relaxational
processes and can provide valuable insight into nonequi-
librium behavior and complex dynamics. Very recently,
we have introduced a class of such models which describe
fundamental aspects of deposition-evaporation (DE) pro-
cesses [2]. The basic kinetic steps involve deposition with-
out overlap and evaporation, possibly after reconstruc-
tion, of k-mers, where k = 1,2, 3, ... denotes monomers,
dimers, trimers, etc. The underlying dynamics is directly
related to lattice models of chemical reactions, ranging
from catalysis processes to reactions on polymer chains
[3].

The object of this work is to elucidate nonequilibrium
dynamical aspects of the dimer model with equal DE
rates. Our study is limited to the dimer system for two
reasons. Firstly, already the case £k = 2 in bipartite
lattices exhibits a Goldstone symmetry breaking largely
responsible for the slow kinetics observed in more general
situations. In particular, for equal DE rates the model is
amenable to an exact calculation of nonequilibrium den-
sity profiles starting from initially unstable states. Sec-
ondly, for k£ > 2 an infinite number of conservation laws
partition the phase space into many universality classes
thus posing rather prohibitive complex difficulties in the
analysis of nonequilibrium dynamics [4].

It turns out that the stochastic time evolution genera-
tor of the dimer model can be cast in terms of an isotropic
spin-3 Heisenberg ferromagnet whose global rotational
symmetries we are going to exploit. The correspondence
between these two types of problem enables us to explore
the interplay between jamming (i.e., the inability to de-
posit or evaporate owing to the absence of two neighbor-
ing vacant or occupied sites), dimensionality, and their
consequences in the stochastic nonequilibrium behavior.
Although we shall consider hypercubic lattices through-
out this work, generalizations to other bipartite geome-
tries and to anisotropic rates should be obvious from the
construction.

The microscopic dynamical rules of our dimer DE
model are defined as follows. Pairs of nearest-neighbor
sites of a d-dimensional lattice are selected at random
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from N locations. A dimer deposition with rate ¢ takes
place if the chosen sites are both vacant. Alternatively,
an evaporation attempt with rate € is successful provided
the two selected sites are already occupied. If neither
deposition nor evaporation is possible the sites’ occupa-
tion numbers remain unchanged. Although this process
does not include explicit particle hopping, note that an
effective next-nearest-neighbor hopping, in which parti-
cle identity changes, can occur under two elementary DE
steps. An example is dimer deposition onto two vacant
sites (e.g., 7+ 1, j+ 2) adjacent to a particle (at j) fol-
lowed by evaporation of the dimer now present on j, j+1.
Therefore our microscopic rules allow for reconstruction
of dimers and redistribution of particles.

Starting from the master equation and representing a
particle (vacancy) at site r by the state of a pseudo-spin-
operator o7 = +1 (or —1), the stochastic evolution of
this system at time ¢ is described by the action of the
“Hamiltonian” exp( —H t), namely,

— § + .+ - 4
H - € [O'l. gr+5j + 0'1. gr+¢§j
rJ

—2(1+0fo5is)], (1)

where o} (o) is a spin-} raising (lowering) operator
at site r and j runs over all nearest-neighbor sites r+4;
of r. Deposition (evaporation) of dimers at rate € is de-
scribed by the action of the first (second) term, whereas
conservation of probability requires the appearance of a
third (diagonal) term.

For bipartite lattices A = A, + Ay, i.e., lattices with
nonfrustrated Néel ordering, clearly the dynamics is par-
titioned into N + 1 disconnected invariant subspaces as
the DE process conserves the lattice staggered “magne-
tization” 37 .\ 0f — > 4, 0. Therefore it is natural
to introduce the sublattice mapping 7. = o, r € A,,
T = (0F,—0¥,—0%), r € Ap which transforms the evo-
lution operator to a Heisenberg ferromagnet

H:_§Z(Tr'rr+6j—1)7 (2)

r,j

and leaves invariant all the components of the total an-
gular momentum T = ), 7. . For unequal DE rates, in
addition to an isotropic Heisenberg coupling, H contains
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staggered field and Dzyaloshinskii-Moriya terms [5], thus
making the analysis rather involved. However, it is worth
pointing out that within the equilibrium regime it is pos-
sible to obtain the asymptotic behavior of autocorrelation
functions and the diffusion constants [2].

In the sublattice representation the steady state | ¢, )
corresponding to the m -down spin sector can be obtained
by rotating the fully jammed all spins up state | )
(Néel configuration of the original system) by means of
the lowering operator T~ =) 7 . Since [, T~ ] =0,
a normalized steady state of this sector can be con-
structed as

|¥m ) = )™ o)

1
m—!—\/ﬁ(T \/—Z|C> (3)

where the sum runs over all the possible 2 = (N ) con-
figurations [C') = 7,7 --- 7, |o) of the subspace within
which the evolution takes place. The nature of the steady
state has important consequences in the calculation of
nonequilibrium properties. We first note that the proba-
bility of finding the system in a configuration [C') at time
t starting from an arbitrary initial configuration | Co ) at
t =10 is Py(C,t) = (C|e M t|Cy), then it is clear from
Eg. (3) that the nonequilibrium density profile po(r,t) is
given by

po(r,1) = VA (Y| e

where i, = 7.7 77 = (1 + 77)/2 is the occupation num-
ber operator at site r. In the sublattice representation
fir = (1 —7,) if r € Ap, although without loss of gen-
erality we may assume that r € A, . Inserting a basis of
common eigenstates { |k)} of # and T? with eigenval-
ues wy, T(T + 1), respectively, it follows that

VAL € (e [k} (k| Co) . (5)

e Mt [Co), (4)

po(r,t) =

However, from Eq. (3), the total spin of the steady state
| %m ) is T = N/2. Since the number operators 7, trans-
form as tensors of rank 1, the Wigner-Eckart theorem en-
sures nonvanishing matrix elements (¢, |, | k) only if
the total spin T of | k) and | %y, ) differs by O or 1, i.e.,
T = N/2, N/2 — 1; in either case with T?* = N/2 —m.
Therefore the sum on the right-hand side of Eq.(5) is
restricted to states |k) having T = N/2,N/2 -1, a
significant simplification. The contributing states are
essentially rotated versions of single spin wave states
o) = 2, ¢x (1) 7 | o) [where gy (r) = N-1/2 eikes
for a hypercubic lattice with periodic boundary condi-
tions] and are the Goldstone modes of our dimer DE
system. Recalling that the angular momentum algebra

Ik) = (

1<

where the prime restricts the sums to vectors r; # r. For
a given set {r?, ...,r% } of initial coordinates of 7 parti-
clesin |[Cp) = o o | o), it follows from Eq.(11)
that

m— 1) A, Z‘Pk D
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imposes

T, T*)=+/(T+T*)(T-T>+1)|T, T* — 1),

the | k) states are generated by applying m — 1 times
(1 <m < N —1) the lowering operator T~ to the spin
waves |pk ). For k #0 (T = N/2 — 1) this yields

N m —1)!
(N m—1)!"

(6)

As was stated above, the state [k = 0) = |¢,,) has
T = N/2 and wg = 0, therefore from Egs. (3) and (5) it
can be seen that its contribution to po(r,t) is

k) = Am (T7)™ " ex)

VB (b || %) ($m | Co) = o (N; 1) —1—m/N.
(7)

We are now left with the calculation of (¢, |7, | k),
k # 0. This matrix element is expanded as

(Ym | for | k) = Am Zwk (Ym | e (T7)™ 75 | 9h0) -
(8)
On the other hand,
fue (T7)™ 115 [40)
= (m—1)!(1-6p)
XD X T T, e 1), (9)

< o <jm-1

where the double prime restricts the sums to vectors
rj #r,p. For r # p there are (ﬁ:f) terms contribut-
ing equally to (¥, | 7ir | k). Hence we obtain

(Pm | e | k) = (m —1)! (Z:f) %
x> ox(p) (1 - b:p)

- —"A‘,((JJ"V‘_’I’;) o). (10)

To complete the calculation of nonequlibrium density
profiles we now evaluate (k|Cp). First we note that

fork #0
DT T e |%0), (11)
"'<jm—1
I m
(k|Co)=(m—1)!1Am > i (r}) , k#0. (12)
=1

Therefore, recalling Egs. (7), (10), and (12), the density
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profile turns out to be

Z Z “kt o (r) pi (1), T EAq.

i=1 allk

po(r,t)

(13)

For a d-dimensional hypercubic lattice with N =
Lq,...,Ly sites and periodic boundary conditions, the
Goldstone excitations are of the form wy = 2¢ E‘;:l (1-
cosk;) with kj = 2zan/L; (0 < n < Lj), hence in the
limit L; — oo we finally obtain

po(r,t) =1 — exp(—2det) Z H I,

=1 j=1

—n?, (2¢t) ,

re A, (14)

where I, (z) is a modiﬁed Bessel function of integer or-
der [6] whereas n; — nf ; denotes the distance of site r
to r) measured along the j direction (the lattice con-
stant has been taken as unity). For r € Ay the above
expression should be modified as 1 — po(r,t). Conse-
quently, it follows that within the sublattice represen-
tation the dimer DE model exhibits a diffusive dynam-
ics as Eq.(14) is the discrete version solution of a d-
dimensional diffusion equation 8p'(r,t)/0t = € V2 p(r, t)
with p'(r,t) =1 — p(r,t) forr € A,.

We now consider the implications of our results for the
nonequilibrium dimer kinetics arising from either non-
jammed or partially jammed initial conditions. A quan-
titative measure of jamming in the initial state is given
by Jo =1~ (Co|H|Co)/Ns as the diagonal elements
of H count the total number of ways in which a given
state can evolve to different configurations in a single el-
ementary DE process (at most Ny, the number of lattice
bonds). For instance, an initially empty substrate (Néel
state in the sublattice spin representation) has minimum
jamming Jy = 0. This is a very common situation within
the context of cooperative sequential adsorption [7], thus
it is of interest to elucidate the resulting dynamics of
equilibration. It can be easily checked from Eq. (14) that
po(r,t) is, as expected, translationally invariant and re-
laxes ezponentially in time as p (t) = (1—e~*/74)/2 with
a characteristic relaxation time 7, = (46)‘1 ford =1,
and 72 = (8¢)~! in the two-dimensional case.

In contrast, the role of dimensionality is crucial for
almost unjammed initial conditions. Consider, for ex-
ample, the case of an initial shock profile p(n,0) = 1
for n < 0 and p(n,0) = 0 for n > 0, where n de-
notes the distance to the shock front or interface. In the
sublattice spin language this corresponds to a straight
domain wall dividing two antiferromagnetic domains of
opposite orientation. Here the jamming is almost mini-
mum (Jo = 0%), however sufficient to yield substantial
differences. On different grounds, the case of initial shock
fronts is particularly important to analyze within our mi-
croscopic approach as in this situation the gradients of
macroscopic variables (such as density) diverge and the
hydrodynamic equations break down [8].

The dimer character of our DE model imposes a dis-
tinction between even and odd n distances although in
either case the asymptotic kinetics is the same, so for
simplicity we may consider even distances, say. For the
one-dimensional lattice Eq. (14) yields

p(2n,t)

where p(0,t) = [1+e72¢t I, (2¢t) ] /2 and Fy,(t) is de-
fined as

=p(0,t) + e **F,(t) , n#0 (15)

Z I (2et) — Izj_1(2¢t)] , n<O
j=1
-1

F_ n(t) + Ig(26t) — I2n 26t)] n>0.

(16)

In the limit n — 400, t = oo with n2?/t held finite, we
obtain

@nt)~ 4 b ex M) (17)
nt)~ - + ——— e -— .
P 2 4+/met P et

Therefore the system is dominated by a slow relaxation
dynamics ~ t~1/2 and exhibits a diffusive interface whose
width grows as 4v/et. In contrast, the situation in
the two-dimensional case changes dramatically. From
Eq. (14) it is straightforward to show that

p(2n, t)-1

; e—bet [% Ip (2¢t) + Fn(t)] y | >2.

(18)

Thus, in the long-time limit we find that the asymptotic
kinetics towards equilibrium is characterized by a fast
(exponential) decay, namely

4F exp [—(4et+ g)] . (19)

The reason for this rather different behavior is that in

= 2 the direction parallel to the interface is initially
unjammed. That is the active region which ultimately
gives rise to the fast dynamics obtained above.

Jammed environments play a central role in the ori-
gin of slow equilibration kinetics, particularly in higher
dimensions. To illustrate this point we finally consider
the complementary scenario in which the only initially
active region is the boundary between two antiferromag-
netic domains of opposite orientation (i. e., a shock profile
in the sublattice spin representation). In contrast with
the situations analyzed so far the amount of initial jam-
ming is almost maximum (Jo = 17). In Fig. 1(a) we
show a snapshot of the dimer DE stochastic evolution
at et = 20. For displaying purposes we only plot the
particles on one sublattice. The nonequilibrium density
profile and asymptotic behavior can be straightforwardly
worked out from Eq. (14). The result turns out to be

@nn_l

p(n,t) = p(0,t) + e 2¢¢ Z I (2¢t) , n<O0

=1

=1+ e %[, (2¢t) — p(—n,t) , n>0, (20)
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FIG. 1. (a) Snapshot of dimer deposition-evaporation
stochastic evolution at et = 20 starting from the nearly
jammed background referred to in the text (only particles
in one sublattice are shown) and (b) corresponding nonequi-
librium density profiles.

where p (0,t) is taken as in Eq. (15), whereas n denotes
the distance to the initial unjammed interface for sites
belonging to one sublattice [see Fig. 1(b)]. Remarkably,
this result is independent of the spatial dimensionality.
In the long-time limit with n?/t kept finite the profile
can be written as

p(n,t)~ 1 [l—erf(n/\/E)] , (21)

where erf (2) = (2/y/7) [5 e=*’du. Since erf (2) ~
2z/y/m for z < 1 [6], the dimer system is dominated
by a slow asymptotic kinetics ~ ¢t~'/2 and develops a
partially jammed interface of width 2y/met. This indi-
cates that in higher dimensions at least partially jammed
initial conditions along all principal d directions can lead
to a slow equilibration dynamics.

In conclusion, we have introduced a spin operational
formalism which enables one to elucidate nonequilibrium
aspects of DE stochastic systems recently introduced in
the literature. For equal DE rates, conservation of proba-
bility imposes a full rotational symmetry in the evolution
operator which ultimately allows for an exact solution
in higher dimensions. This rather crucial feature is lost
for unequal DE rates. It should be emphasized that the
above results do not constitute a complete solution of
the dimer DE model. Information about nonequilibrium
spatial pair correlations is also of interest. Such correla-
tions could be calculated after shifting the problem (by
spin rotation) to the two interacting magnon sector. The
possibility of bound states arising in this sector could
contribute importantly to the long-time kinetics of these
correlations and therefore to the structure factors. Stud-
ies in that direction are under consideration. The eluci-
dation of nonequilibrium dynamics for the general k-mer
system remains quite open.
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